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We study a system of particles moving on a line in the same direction. Passing is allowed and when a fast
particle overtakes a slow particle, it acquires a new velocity drawn from a distributionP0(v), while the slow
particle remains unaffected. We show that the system reaches a steady state ifP0(v) vanishes at its lower
cutoff; otherwise, the system evolves indefinitely.
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We study a system of interacting particles moving on
real line in one direction, say to the right. The system
endowed with the following dynamics:~i! Particles move
freely between ‘‘collisions’’;~ii ! After a collision, or ‘‘pass-
ing’’ event, the velocity of the slow particle remains th
same,vslow5const, while the fast particle instantaneously a
quires some new velocity,vnew.vslow, drawn from the in-
trinsic velocity distributionP0(v). We want to answer basi
questions about the behavior of the system such as, doe
velocity distributionP(v,t) reach a steady state or does t
system continue to evolve indefinitely? How does the av
age velocity depend on time?

Our motivation is primarily conceptual, as we want
understand nonequilibrium infinite particle systems w
two-body interactions. Thus, we have chosen the simp
dynamics, interactions occur only upon colliding, and on
one particle is affected. The appealing simplicity of t
model suggests that it might arise in different natural p
nomena, and indeed, we originally arrived at this model in
attempt to mimic traffic on one-lane roads. Somewhat rela
dynamics were already used in modeling voting syste
@1,2#, force fluctuations in bead packs@3#, asset exchange
processes@4#, combinatorial processes@5#, continuous asym-
metric exclusion processes@6#, granular gases@7#, and
aggregation-fragmentation processes@8#.

Let us first consider discrete velocity distributions. Sp
cifically, we assume that both initial velocities and new v
locities are drawn from the same intrinsic distributio
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P0(v)5(pjd(v2v j ). For the binary distribution, the sys
tem does not evolve at all, so the first nontrivial case is
ternary intrinsic distribution when the system contains slo
moderate, and fast particles. Initially,

P0~v !5p1d~v2v1!1p2d~v2v2!1p3d~v2v3!. ~1!

We set

p11p21p351, v1,v2,v3 , ~2!

without a loss of generality. When the steady state
reached, the velocity distribution remains ternary,

Peq~v !5p1d~v2v1!1q2d~v2v2!1q3d~v2v3!. ~3!

The density of slow particles does not change, while
densitiesq2 andq3 of moderate and fast particles differ from
the initial values. The final densities are found from a sim
probabilistic argument based on the requirement of stat
arity. For moderate particles we get

p3~v22v1!q25p2~v32v1!q3 . ~4!

The left-hand side of Eq.~4! gives the loss inq2, which
happens when a moderate particle overtakes a slow par
and becomes a fast particle. The right-hand side gives
gain in q2, which takes place when a fast particle overtak
a slow particle and converts into a moderate particle. Solv
Eq. ~4! together with the normalization condition,p11q2
1q351, we find
R2163 ©2000 The American Physical Society
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q25p2

p21p3

p21np3
, q35np3

p21p3

p21np3
, ~5!

where n5(v22v1)/(v32v1). Since n,1, we have q2
.p2 and q3,p3. Thus, the density of moderate particl
increases while the density of fast particles decreases. S
larly, one can analyze discrete velocity distributions w
more than three particle species. In all cases,~i! the system
reaches a steady state,~ii ! the average velocity decreases a
eventually reaches some finite value, and~iii ! the density of
slow particles remains unchanged.

Now we turn to continuous velocity distributions. Le
@vmin ,vmax# be a support of the intrinsic velocity distributio
P0(v). By Galilean transform, we can setvmin50 without
loss of generality. We consider unbounded distributio
v max5`, although main results equally apply to the case
finite vmax.

The passing rule asserts that when a fast particle o
takes a slow particle moving with a velocityvslow, the as-
signment of the new velocityv occurs with probability

P0~vuvslow!5P0~v !
u~v2vslow!

E
vslow

`

dv8P0~v8!

. ~6!

Equation~6! guarantees thatv.vslow and that the normaliza
tion requirement,*dvP0(vuvslow)51, is obeyed.

Now we can write a Boltzmann equation for the veloc
distributionP(v,t),

]P~v,t !

]t
52P~v,t !E

0

v
dv8~v2v8!P~v8,t !

1E
0

v
dv2P0~vuv2!E

v2

`

dv1~v12v2!

3P~v1 ,t !P~v2 ,t !. ~7!

The first term on the right-hand side of Eq.~7! describes loss
in P(v,t) due to collisions with more slow particles: Coll
sions occur with a rate proportional to velocity differenc
and the integration limits ensure that only collisions w
slower particles are taken into account. The second, a
term, accounts for the increase ofP(v,t) due to a random
assignment of velocityv after collision.

We could not solve Eq.~7! in the general case of a
arbitrary intrinsic velocity distributionP0(v). Attempts to
find a solution even for some particularly simpleP0(v), e.g.,
linear, exponential, or uniform, turned out to be fruitless
well. Thus, we proceed by employing asymptotic, appro
mate, and numerical techniques.

We start by looking at the asymptotic behavior ofP(v) in
the small velocity limit. Letv!u(t), whereu(t) is the av-
erage velocity,

u~ t ![^v&5E
0

`

dvvP~v,t !. ~8!

Then Eq.~7! simplifies to
i-

,
f

r-

,
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s
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]P~v,t !

]t
5P0~v !u~ t !E

0

v
dv2P~v2 ,t !

2P~v,t !E
0

v
dv8~v2v8!P~v8,t !. ~9!

To probe the smallv behavior, we need to knowP0(v) at
v→0. Let us consider a family of intrinsic velocity distribu
tions that behave algebraically,

P0~v !.Avm when v→0. ~10!

Now assumethat the system reaches the steady sta
P(v,t)→Peq(v) andu(t)→ueq. Plugging these expression
and Eq.~10! into Eq. ~9!, we find thatPeq(v) also behaves
algebraically in the small velocity limit,

Peq~v !.~m11!Aueqv
m21 when v→0. ~11!

By inserting this asymptotics into the normalization con
tion, *0

`dvP(v)51, we see that it could hold only whenm
.0. Thus, ourassumptionthat the system reaches a stea
state is certainly wrong whenm<0. In this region the sys-
tem will evolve indefinitely. Note that both the exponenti
and uniform intrinsic distributions belong to the borderlin
case ofm50 that separates stationary and evolutionary
gimes; for them an anomalously slow kinetics is expecte

To probe the behavior of evolving systems, weassume
that in the long-time limit there is a very small fraction o
‘‘active’’ particles that move with velocitiesv;1 and the
vast majority of ‘‘creeping’’ particles that hardly move at a
We ignore collisions between active particles since their d
sity is very low. We also ignore collisions between creepi
particles since their relative velocity is very small. This pi
ture suggests that only collisions between active and cre
ing particles matter. Hence, the velocity distribution of acti
particles obeys

]P~v,t !

]t
5P0~v !u~ t !2vP~v,t !. ~12!

Equation~12! may at best describe the evolution process
the long-time limit. However, for the sake of tractability, w
apply it to the entire time range and use the natural ini
conditionP(v,0)5P0(v). Solving Eq.~12! gives

P~v,t !5P0~v !e2vtF11E
0

t

dt8u~ t8!evt8G . ~13!

This solution impliesP(v,t);u(t)v21P0(v) for v@t21,
which resembles Eq.~11!.

To close the solution of Eq.~13!, we must determine
u(t). It is possible to plug Eq.~13! into the definition of the
average velocity, Eq.~8!, and get an integral equation fo
u(t). In the following we use another approach, which
technically simpler. Note that the density of active particl
*dvP(v,t), is manifestly conserved by Eq.~12!. After inte-
gration over velocity, Eq.~13! becomes

15 P̂0~ t !1E
0

t

dt8u~ t8!P̂0~ t2t8!, ~14!
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where P̂0(t)5*0
`dvP0(v)e2vt is the Laplace transform o

the intrinsic velocity distribution. One can guess the lo
time behavior of the average velocity without actually so
ing Eq. ~14!. Let us assume that the average velocity var
slowly with t. Then the integral on the right-hand side of E
~14! can be estimated asu(t)*0

t dt8P̂0(t8), which implies

u~ t !;F E
0

t

dt8P̂0~ t8!G21

. ~15!

For an intrinsic velocity distribution with an algebraic beha
ior ~10! in the small-v limit, we haveP̂0(t);t212m for large
t. Hence*0

t dt8P̂0(t8);t2m for m,0, and it follows from
Eq. ~15! that u(t);tm.

The above derivation is careless, though the final asy
totics is correct. To determineu(t) rigorously, we apply the
Laplace transform as it is suggested by the convolution fo
of the integral in Eq.~14!. This recasts Eq.~14! into

1

s
5E

0

`

dv
P0~v !

s1v
1û~s!E

0

`

dv
P0~v !

s1v
, ~16!

where

û~s!5E
0

`

dtu~ t !e2st. ~17!

Note that the double Laplace transform ofP0(v) has been
simplified by using the identity

E
0

`

dte2stE
0

`

dvP0~v !e2vt5E
0

`

dv
P0~v !

s1v
. ~18!

Thus the Laplace transform of the average velocity is

û~s!5211FsE
0

`

dv
P0~v !

s1v G21

. ~19!

Generally, one cannot obtain more explicit results. Giv
that the above approach describes only the long-time asy
totics, let us focus on this regime. To probe the long-ti
behavior, one should determine the smalls asymptotics of
û(s). For algebraic intrinsic velocity distributions~10!, the
asymptotics of Eq.~18! reads

E
0

`

dv
P0~v !

s1v
→AsmE

0

`

dw
wm

w11
5

Ap

sin~2pm!
sm. ~20!

This applies for21,m,0 @the lower bound comes from
the normalization requirement,*dvP0(v)51#. Plugging Eq.
~20! into Eq. ~19! yields

û~s!→ sin~2pm!

Ap
s212m for s→0, ~21!

and by making the inverse Laplace transform, we finally
rive at

u~ t !→ sin~2pm!

ApG~11m!
tm for t→`. ~22!
-
s
.

p-

n
p-

e

-

Equation ~22! agrees with the previous nonrigorous arg
ment.

A special consideration is required for the borderline ca
of m50. For concreteness, consider the exponential intrin
distribution,P0(v)5exp(2v). Its double Laplace transform
reads

E
0

`

dv
e2v

s1v
5esE1~s!,

whereE1(s)5*1
`dxx21e2xs is the exponential integral. As a

result, Eq.~19! becomes

û~s!5211
1

sesE1~s!
. ~23!

Using the well-known asymptotics of the the exponent
integral @9#, E1(s)52 ln s2g1O(s), ~where g>0.5772 is
Euler’s constant!, we transform Eq.~23! into

FIG. 1. Plot ofP(v,t) at t5200 for P0(v)5ve2v: simulation
result (s) and numerical solution~—!. The dashed line shows th
simulation result forP(v,t) at t516 000.

FIG. 2. Plot ofu(t) vs time t for P0(v)5ve2v.
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û~s!52
1

s~ ln s1g!
1OS 1

ln sD . ~24!

Performing the inverse Laplace transform we find thatu(t)
→(ln t)21 ast→`. Thus, for the family of intrinsic velocity
distribution with algebraic behavior~10! near the lower cut-
off, our predictions for the long-time asymptotics of the a
erage velocityu(t) are

u~ t !;H const for m.0

~ ln t !21 for m50

tm for 21,m,0.

~25!

To check the validity of asymptotic predictions and, mo
generally, to see if the mean-field theory is applicable at
we perform molecular dynamics simulations and solve
Boltzmann equation~7! numerically. To sample distinct re
gimes predicted in Eq. ~25! we consider P0(v)
5vme2v/G(m11) with m51,0,21/2.

In molecular dynamics simulations, we placeN particles
onto the ring of lengthL5N so that the average density
equal to 1. Most of our simulations are performed forN
553104 particles, but we also simulated twice larger sy
tem and found no appreciable difference. Initially, partic
velocities are randomly drawn from the distributionP0(v).
The model is updated according to the collision-time-list
gorithm suggested in Ref.@10#. To solve Eq.~7! numerically,
we use Euler’s time update with both uniform and nonu
form grids; in the latter case, we takev j5( j / j max)

4vmax with
vmax515 andNmax5500. Integrals on the right-hand side
Eq. ~7! are calculated using the trapezoid rule; time inc
ment dt50.1 was found to be suitable for all threeP0(v).
The results of molecular dynamics simulations and num
cal solutions of the mean-field equation are virtually iden
cal ~see Fig. 1!. Thus, the system remains well-stirred and
appreciable spatial correlations develop.

Figure 1 shows that forP0(v)5ve2v, the approach of
P(v,t) to the steady state is nonuniform in velocity. This
caused by the obvious fact that for any finite time, the vel
ity distributionP(v,t) must still vanish at the lower cutoff a
P0(v) does. The steady state is reached in the ‘‘outer’’

FIG. 3. Plot of exp@1/u(t)# vs time t for P0(v)5e2v.
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gion v@v* (t), while in the ‘‘inner,’’ or boundary layer re-
gion the velocity distribution continues to evolve. The thic
ness v* (t) of the boundary layer is determined by
dominant-balance argument@9#. Sincev* (t)!ueq as t→`,
we can consider Eq.~9! instead of the full Boltzmann equa
tion ~7!. Balancing terms in Eq.~9! yields t21P;v

*
m11P,

which implies v* ;t21/(m11). Thus, the thickness of the
boundary layer indeed shrinks with time but the bound
layer still existsad infinitum. To determine a leading-orde
approximation toP(v,t) as t→`, one should separatel
solve for P(v,t) in the outer and inner regions and the
match the solutions. In the outer region,Pout(v,t)5Peq(v)
and Eq.~7! simplifies to an integral equation. It is impossib
to solve that equation in closed form, apart from the reg
v!ueq whereP eq(v) is given by Eq.~11!. In the inner re-
gion, the situation also considerably simplifies as the veloc
distribution attains the scaling form Pin(v,t)
5v

*
m21F(v/v* ). Matching inner and outer solutions yield

F(h);hm21 ash→`. Unfortunately, it is still impossible
to solve forF(h).

Figures 2–4 plot the average velocity versus time for
intrinsic velocity distributionsP0(v)5vme2v/G(m11) with
m51,0,21/2, respectively. We find good agreement w
the theoretical prediction of Eq.~25! when m>0. For
m521/2, the extrapolation of the local exponenta(t)
[d ln@u(t)#/d ln@t# to the t→` limit is in satisfactory agree-
ment witha theor5m.

In summary, we have shown that the fate of the system
passing particles is determined by the behavior of the int
sic velocity distribution near its lower cutoff: IfP0(v) van-
ishes in this limit, the system reaches a steady state; ot
wise, the evolution continues forever. Comparison betw
solutions of the mean-field Boltzmann equation and res
of molecular dynamics simulations suggests that the me
field theory description is exact. It will be interesting to co
firm this result rigorously.

We gratefully acknowledge partial support from the NS
and ARO.

FIG. 4. Log-log plot of u(t) vs time t for P0(v)
5(pv)21/2e2v: molecular dynamics results (s) and numerical so-
lution ~—!.
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