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We study a system of particles moving on a line in the same direction. Passing is allowed and when a fast
particle overtakes a slow particle, it acquires a new velocity drawn from a distribBtjar), while the slow
particle remains unaffected. We show that the system reaches a steady 8tge)ifvanishes at its lower
cutoff; otherwise, the system evolves indefinitely.

PACS numbgs): 02.50-r, 05.40—a, 89.40+k, 05.20.Dd

We study a system of interacting particles moving on thePy(v) =2p;é(v —v;). For the binary distribution, the sys-
real line in one direction, say to the right. The system istem does not evolve at all, so the first nontrivial case is the
endowed with the following dynamicgi) Particles move ternary intrinsic distribution when the system contains slow,
freely between “collisions”;(ii) After a collision, or “pass- moderate, and fast particles. Initially,
ing” event, the velocity of the slow particle remains the
sameyp ¢ w=Cconst, while the fast particle instantaneously ac- Po(v)=p18(v—v1)+p26(v—v,)+p3dv—v3). (1)
quires some new VeloCityy new™>vgiow, drawn from the in-  \ye set
trinsic velocity distributionPy(v). We want to answer basic
guestions about the behavior of the system such as, does the
velocity distributionP(v,t) reach a steady state or does thewithout a loss of generality. When the steady state is
system continue to evolve indefinitely? How does the averreached, the velocity distribution remains ternary,
age velocity depend on time?

Our motivation is primarily conceptual, as we want to Pedv)=p18(v—v1)+028(v —v,) +d38(v —v3). (3
understand nonequilibrium infinite particle systems with
two-body interactions. Thus, we have chosen the simples
dynamics, interactions occur only upon colliding, and only
one particle is affected. The appealing simplicity of the
model suggests that it might arise in different natural phe
nomena, and indeed, we originally arrived at this model in arft
attempt to mimic traffic on one-lane roads. Somewhat related B _ B 4
dynamics were already used in modeling voting systems Pa(v2=01)d2=P2(vs—v1)0s- @)
[1,2], force fluctuations in bead pack8], asset exchange The left-hand side of Eq(4) gives the loss ing,, which
processef4], combinatorial process¢S], continuous asym- happens when a moderate particle overtakes a slow particle
metric exclusion processes], granular gaseq7], and and becomes a fast particle. The right-hand side gives the
aggregation-fragmentation proces§&b gain inqg,, which takes place when a fast particle overtakes

Let us first consider discrete velocity distributions. Spe-a slow particle and converts into a moderate particle. Solving
cifically, we assume that both initial velocities and new ve-Eq. (4) together with the normalization conditiop;+q,
locities are drawn from the same intrinsic distribution +q;=1, we find

pitp2tps=1, v1<v,<vg, (2

he density of slow particles does not change, while the
ensitieg)], andqy of moderate and fast particles differ from
the initial values. The final densities are found from a simple
probabilistic argument based on the requirement of station-
rity. For moderate particles we get
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_ P2tps _ P2+ P3 dP(v,t) f”
92=P2pns Ga=vPa 5 o~ Polv)u(t) Odvzp(vz,t)
where v=(v,—v)/(v3—v4). Since vr<1, we haveq, —P(v,t)f0 dv'(v—v")P(v’,1). (9)

>p, and g;<ps. Thus, the density of moderate particles
increases while the density of fast particles decreases. Simil:
larly, one can analyze discrete velocity distributions with
more than three particle species. In all cagBsthe system
reaches a steady stat&) the average velocity decreases and
eventually reaches some finite value, diid the density of _

slow particles remains unchanged. Po(v)=Av* when v—0. (10

Now we turn to continuous velocity distributions. Let  Now assumethat the system reaches the steady state:
[Vmin,Umax] D€ @ support of the intrinsic velocity distribution P(v,t)—Pefv) andu(t)—Ue,. Plugging these expressions

Po(v). By Galilean transform, we can sepy,=0 without 54 Eq (10) into Eq. (9), we find thatP.{v) also behaves
loss of generality. We consider unbounded d'St“bUt'OnSalgebraically in the small velocity limit

U max=°, although main results equally apply to the case of

finite v mayx. . Peqv)=(u+1)Auep® ! whenv—0. (11
The passing rule asserts that when a fast particle over-

takes a slow particle moving with a velocity,,, the as- By inserting this asymptotics into the normalization condi-

0 probe the small behavior, we need to knowy(v) at
v—0. Let us consider a family of intrinsic velocity distribu-
tions that behave algebraically,

signment of the new velocity occurs with probability tion, [{dvP(v)=1, we see that it could hold only when
>0. Thus, ourassumptiorthat the system reaches a steady
0(v — Vo) state is certainly wrong whepn<0. In this region the sys-
Po(v]vsiow) = Po(v)— : (6)  tem will evolve indefinitely. Note that both the exponential
f dv'Pgy(v') and uniform intrinsic distributions belong to the borderline
Uslow case ofu=0 that separates stationary and evolutionary re-
gimes; for them an anomalously slow kinetics is expected.
Equation(6) guarantees that>v o, and that the normaliza- To probe the behavior of evolving systems, agsume
tion requirement dv Py(v|vgow) =1, is obeyed. that in the long-time limit there is a very small fraction of
Now we can write a Boltzmann equation for the velocity “active” particles that move with velocities ~1 and the
distribution P(v,t), vast majority of “creeping” particles that hardly move at all.

We ignore collisions between active particles since their den-
v sity is very low. We also ignore collisions between creeping
- P(v-t)f dv’(v—v")P(v',1) particles since their relative velocity is very small. This pic-
0 ture suggests that only collisions between active and creep-
ing particles matter. Hence, the velocity distribution of active
particles obeys

dP(v,t) B
a

+f0 dv2P0(v|v2)f dvi(v1—vp)
v2

XP(vq,1)P(v3,1). () IP(v,1)
ot

=Po(v)u(t)—vP(v,t). (12
The first term on the right-hand side of E@) describes loss

n P(v.t) due toh collisions with morelz slow Ipa_rtlclgif: Colli- Equation(12) may at best describe the evolution process in
sions occur with a rate proportional to velocity difterence,,q o0 time limit. However, for the sake of tractability, we

and the integration limits ensure that only collisions with o it 15 the entire time range and use the natural initial
slower particles are taken into account. The second, a gallyndition P(,0)=Po(v). Solving Eq.(12) gives

term, accounts for the increase B{v,t) due to a random
assignment of velocity after collision.

We could not solve Eq(7) in the general case of an P(v,t)=Py(v)e "
arbitrary intrinsic velocity distributionPy(v). Attempts to
f!nd a solution even for some particularly simptg(v), €9 This solution impliesP(u,t)~u(t)v~*Po(v) for v>t 2,
linear, exponential, or uniform, turned out to be fruitless as_, .
well. Thus, we proceed by employing asymptotic approxi-WhICh resembles qu.l)' .

) ’ . . ’ To close the solution of Eq(13), we must determine

mate, and numerical techniques.

; . . . u(t). It is possible to plug Eq(13) into the definition of the
We start by looking at the asymptotic behavioR{fv) in . . X
the small velgcity Iim%t. Letv<u>2t)pwhereu(t) ierg:é)av- average velocity, Eq(8), and get an integral equation for

erage velocit u(t). In the following we use another approach, which is
9 Ys technically simpler. Note that the density of active particles,
JdvP(v,t), is manifestly conserved by E(L2). After inte-

u(t)=(v)= fxdva(v,t). ®) gration over velocity, Eq(13) becomes
0

t ’
1+fdt’u(t’)e”‘ . (13
0

~ t ~
1=Py(t)+ | dt'u(t’)Py(t—t"), 14
Then Eq.(7) simplifies to olt) J'o (t)Pol ) 14
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where Iso(t)=f§dv Po(v)e ! is the Laplace transform of
the intrinsic velocity distribution. One can guess the long
time behavior of the average velocity without actually solv-
ing Eq. (14). Let us assume that the average velocity varies 30 A |
slowly with t. Then the integral on the right-hand side of Eq. '

. ]
(14) can be estimated ag(t) [dt'Py(t’), which implies "'ll
I
too -t Za0ll! ]
u(t)~“ dt'PO(t’)} . 15 &*q!
0 Jl ||
For an intrinsic velocity distribution with an algebraic behav- :
ior (10) in the smalle limit, we havePy(t)~t~1~* for large Lot \ ]
t. Hencefgdt’lso(t’)fvt*“ for u<0, and it follows from 1 \\

Eq. (15) thatu(t) ~t~.
The above derivation is careless, though the final asymp- 4, .

totics is correct. To determing(t) rigorously, we apply the 0.0 Lo 20 3.0
Laplace transform as it is suggested by the convolution form v ) )
result O) and numerical solutiof—). The dashed line shows the
1 ©  Py(v) . = Py(v) simulation result forP(v,t) att=16 000.
s fo dv ST D -l—u(s)f0 dv e (16

Equation (22) agrees with the previous nonrigorous argu-

where ment. o _ _
A special consideration is required for the borderline case

- o et of u=0. For concreteness, consider the exponential intrinsic
u(s)= fo dtu(t)e . (17 distribution, Po(v) = exp(v). Its double Laplace transform
reads
Note that the double Laplace transform Bf(v) has been
simplified by using the identity fw e’
. dv sTo =e%E4(s),

C ramst] ot [ Pol®)
dte dvPy(v)e " =| dv e (18
0 0 0 v whereE(s) = [7dxx e *Sis the exponential integral. As a

Thus the Laplace transform of the average velocity is result, Eq.(19) becomes

= P
Sfo dv o(v)

S+vu

u(s)=—1+ (19 a<s>:—1+m. (23

Generally, one cannot obtain more explicit results. Givenysing the well-known asymptotics of the the exponential
that the above approach describes only the long-time asympntegral [9], E,(s)= —Ins—y+0(s), (where y=0.5772 is

totics, let us focus on this regime. To probe the long-timegyler's constant we transform Eq(23) into
behavior, one should determine the snmatsymptotics of

u(s). For algebraic intrinsic velocity distributiond.0), the 2.0
asymptotics of Eq(18) reads
Fd Pafo) As’“‘fwd W AT w0
0 US+U*> 0 WW+1_Sin(—7T,LL)S' (20
1.5 + .
This applies for—1<u<0 [the lower bound comes from
the normalization requiremenfdv Py(v)=1]. Plugging Eq. &
(20) into Eq. (19) yields =
- sin(— 10 r 1
u(s)—>n(—'u)s*1*“ for s—0, (21)
A
and by making the inverse Laplace transform, we finally ar-
rive at
%00 5000 10000 1500.0
sin(—mu) t

u(t ——t* for t . 22
( )HAWF(l—F,u) - (22) FIG. 2. Plot ofu(t) vs timet for Py(v)=ve .
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FIG. 3. Plot of expl/u(t)] vs timet for Po(v)=e"". FIG. 4. Log-log plot of u(t) vs time t for Py(v)
=(mv) " Y%™": molecular dynamics result€X) and numerical so-
lution (—).

u(s)= s(Ins+ ) +O(Ins)' (24)
gionv>wv, (t), while in the “inner,” or boundary layer re-
Performing the inverse Laplace transform we find thét) gion the velocity distribution continues to evolve. The thick-
—(Int)"tast—oo. Thus, for the family of intrinsic velocity ness v, (t) of the boundary layer is determined by a
distribution with algebraic behavidl0) near the lower cut- dominant-balance argumeffl]. Sincev, (t)<ugqast—os,
off, our predictions for the long-time asymptotics of the av-we can consider Eq9) instead of the full Boltzmann equa-
erage velocityu(t) are tion (7). Balancing terms in Eq(9) yields t *P~v*“* 1P,
which implies v, ~t~ Y1) Thus, the thickness of the
boundary layer indeed shrinks with time but the boundary
u(t)~ (Int)y" for u=0 (25) layer still existsad infinitum To determine a leading-order
tr for —1<u<0. approximation to_P(v,t) as t—oo, one shou_Id separately
solve for P(v,t) in the outer and inner regions and then

To check the validity of asymptotic predictions and, moreMaich the solutions. In the outer regidPy.(v,t) = Pev)
generally, to see if the mean-field theory is applicable at all2nd Ea.(7) simplifies to an integral equation. It is impossible
we perform molecular dynamics simulations and solve thd© Solve that equation in closed form, apart from the region
Boltzmann equatiori7) numerically. To sample distinct re- v<UeqWhereP ¢(v) is given by Eq.(11). In the inner re-
gimes predicted in Eq. (250 we consider Py(v) gion, the situation also considerably simplifies as the velocity
=p*e Y/T'(u+1) with u=1,0—-1/2. distribution  attains the scaling form P, (v,t)

In molecular dynamics simulations, we plaieparticles =v*~'®(v/v,). Matching inner and outer solutions yields
onto the ring of lengtiL =N so that the average density is & (7))~ »*~* as p—o. Unfortunately, it is still impossible
equal to 1. Most of our simulations are performed for to solve ford (7).
=5x10" particles, but we also simulated twice larger sys- Figures 2—4 plot the average velocity versus time for the
tem and found no appreciable difference. Initially, particleintrinsic velocity distributionso(v) =v#e /T’ (u+ 1) with
velocities are randomly drawn from the distributi®g(v).  ,=1,0-1/2, respectively. We find good agreement with
The model is updat_ed according to the coII|S|on-t|rr_1e—I|st al-the theoretical prediction of Eq(25 when u=0. For
gorithm suggested in Ref10]. To solve Eq(7) numerically, u=—1/2, the extrapolation of the local exponeni(t)

we use Euler's time update with both uniform and nonuni-_ g jnryt)ydin[t] to thet—= limit is in satisfactory agree-
form grids; in the latter case, we take= (j/jma) v max With : _
ment wWith ayeo= -

Umax= 15 andNma,=500. Integrals on the right-hand side of In summary, we have shown that the fate of the system of

s Aeen g e e Ll e " assng partle s deermine b e behaviorof e i

The results of molecular dynamics simulations and numeric'¢ vel_ocny_ d'.Str!bUt'on near its lower cutoff: Pq(v) va.n-

cal solutions of the mean-field equation are virtually identi-'s.hes in this I|m|_t, the system reaches a steady state; other-

cal (see Fig. 1. Thus, the system remains well-stirred and no"" >’ the evolution continues forever. Comparison between

appreciable spatial correlations develop. solutions of the megn-fpld BoIltzmann equation and results
Figure 1 shows that foP(v)=ve °, the approach of of molecular dynamics simulations suggests that the mean-

P(u,1) to the steady state is nonuniform in velocity. This iSfleld theory description is exact. It will be interesting to con-

caused by the obvious fact that for any finite time, the veloc-flrm this result rigorously.

ity distribution P(v,t) must still vanish at the lower cutoff as We gratefully acknowledge partial support from the NSF
Po(v) does. The steady state is reached in the “outer” re-and ARO.

const for u>0
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